login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k) = Number of (n+1) X (k+1) 0..3 arrays with the number of clockwise edge increases in every 2 X 2 subblock equal to the number of counterclockwise edge increases.
9

%I #9 Oct 06 2015 21:53:00

%S 152,1448,1448,13800,33416,13800,131528,773288,773288,131528,1253608,

%T 17903016,43689232,17903016,1253608,11948296,414522184,2473041560,

%U 2473041560,414522184,11948296,113880744,9597910280,140051200968

%N T(n,k) = Number of (n+1) X (k+1) 0..3 arrays with the number of clockwise edge increases in every 2 X 2 subblock equal to the number of counterclockwise edge increases.

%C Table starts

%C ........152..........1448.............13800................131528

%C .......1448.........33416............773288..............17903016

%C ......13800........773288..........43689232............2473041560

%C .....131528......17903016........2473041560..........343092183768

%C ....1253608.....414522184......140051200968........47661128330328

%C ...11948296....9597910280.....7932164084608......6623652903138136

%C ..113880744..222232271912...449271828443912....920635760474340792

%C .1085412040.5145622169576.25446613122575176.127966524262127129240

%H R. H. Hardin, <a href="/A208492/b208492.txt">Table of n, a(n) for n = 1..143</a>

%e Some solutions for n=4, k=3:

%e ..3..2..0..1....0..3..3..3....1..0..3..3....1..1..0..0....0..0..1..2

%e ..0..3..1..1....2..1..1..1....3..2..1..3....3..1..0..0....0..3..0..1

%e ..3..2..3..1....0..2..1..0....2..2..2..0....1..0..1..0....1..0..1..2

%e ..1..3..2..0....3..0..2..1....3..2..2..0....2..1..1..0....1..1..0..1

%e ..1..3..2..0....3..3..0..3....1..3..2..2....2..2..1..1....1..0..3..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 27 2012