login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = total sum of odd/even parts >= k in all partitions of n, if k is odd/even.
3

%I #21 Mar 11 2015 07:27:17

%S 1,2,2,7,2,3,10,10,3,4,23,12,11,4,5,36,30,17,14,5,6,65,40,35,18,17,6,

%T 7,94,82,49,44,22,20,7,8,160,110,93,58,48,26,23,8,9,230,190,133,108,

%U 70,56,30,26,9,10,356,260,217,148,124,76,64,34,29,10,11

%N Triangle read by rows: T(n,k) = total sum of odd/even parts >= k in all partitions of n, if k is odd/even.

%C Essentially this sequence is related to A206561 in the same way as A206563 is related to A181187. See the calculation in the example section of A206563.

%H Alois P. Heinz, <a href="/A208475/b208475.txt">Rows n = 1..141, flattened</a>

%e Triangle begins:

%e 1;

%e 2, 2;

%e 7, 2, 3;

%e 10, 10, 3, 4;

%e 23, 12, 11, 4, 5;

%e 36, 30, 17, 14, 5, 6;

%p p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):

%p b:= proc(n, i) option remember; local f, g;

%p if n=0 then [1]

%p elif i=1 then [1, n]

%p else f:= b(n, i-1); g:= `if`(i>n, [0], b(n-i, i));

%p p (p (f, g), [0$i, g[1]])

%p fi

%p end:

%p T:= proc(n) local l;

%p l:= b(n, n);

%p seq (add (l[i+2*j+1]*(i+2*j), j=0..(n-i)/2), i=1..n)

%p end:

%p seq (T(n), n=1..14); # _Alois P. Heinz_, Mar 21 2012

%t p[f_, g_] := With[{m = Max[Length[f], Length[g]]}, PadRight[f, m, 0] + PadRight[g, m, 0]]; b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1}, i == 1, {1, n}, True, f = b[n, i-1]; g = If[i>n, {0}, b[n-i, i]]; p[p[f, g], Append[Array[0&, i], g[[1]]]]]]; T[n_] := Module[{l}, l = b[n, n]; Table[Sum[l[[i+2j+1]]*(i+2j), {j, 0, (n-i)/2}], {i, 1, n}]]; Table[T[n], {n, 1, 14}] // Flatten (* _Jean-François Alcover_, Mar 11 2015, after _Alois P. Heinz_ *)

%Y Column 1-2: A066967, A066966. Right border is A000027.

%Y Cf. A138785, A181187, A206561, A206563, A208476.

%K nonn,tabl

%O 1,2

%A _Omar E. Pol_, Feb 28 2012

%E More terms from _Alois P. Heinz_, Mar 21 2012