%I #5 Mar 31 2012 12:37:23
%S 1,2,2,5,14,5,14,54,54,14,41,216,129,216,41,122,864,339,339,864,122,
%T 365,3456,1123,1292,1123,3456,365,1094,13824,4155,6416,6416,4155,
%U 13824,1094,3281,55296,15273,32813,50507,32813,15273,55296,3281,9842,221184,55715
%N T(n,k)=Number of nXk 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors)
%C Table starts
%C ....1.....2.....5.....14.......41.......122........365.........1094
%C ....2....14....54....216......864......3456......13824........55296
%C ....5....54...129....339.....1123......4155......15273........55715
%C ...14...216...339...1292.....6416.....32813.....169899.......885540
%C ...41...864..1123...6416....50507....365195....2623167.....19281232
%C ..122..3456..4155..32813...365195...3673572...36422648....371453021
%C ..365.13824.15273.169899..2623167..36422648..509698666...7308976236
%C .1094.55296.55715.885540.19281232.371453021.7308976236.148054300100
%H R. H. Hardin, <a href="/A208434/b208434.txt">Table of n, a(n) for n = 1..220</a>
%e Some solutions for n=4 k=3
%e ..0..0..0....0..1..0....0..1..0....0..0..0....0..1..2....0..0..1....0..0..0
%e ..1..0..2....1..1..1....2..1..2....1..1..1....1..2..1....2..0..1....1..1..2
%e ..1..1..2....2..1..2....0..1..0....2..1..2....0..1..0....2..2..1....1..2..2
%e ..1..0..2....0..2..0....2..1..2....0..2..0....1..0..1....2..0..1....0..0..2
%Y Column 1 is A007051(n-1)
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Feb 26 2012