login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of n X 2 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
3

%I #10 Jun 29 2023 13:14:31

%S 2,14,54,216,864,3456,13824,55296,221184,884736,3538944,14155776,

%T 56623104,226492416,905969664,3623878656,14495514624,57982058496,

%U 231928233984,927712935936,3710851743744,14843406974976,59373627899904

%N Number of n X 2 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

%C Column 2 of A208434.

%H R. H. Hardin, <a href="/A208428/b208428.txt">Table of n, a(n) for n = 1..210</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (4).

%F Empirical: a(n) = 4*a(n-1) for n>3.

%F Conjectures from _Colin Barker_, Feb 23 2018: (Start)

%F G.f.: 2*x*(1 + 3*x - x^2) / (1 - 4*x).

%F a(n) = 27*2^(2*n - 5) for n>2.

%F (End)

%e Some solutions for n=4:

%e ..0..0....0..0....0..0....0..1....0..0....0..0....0..1....0..0....0..0....0..0

%e ..1..1....0..0....1..1....2..1....1..2....0..0....0..2....0..1....1..1....0..0

%e ..1..1....1..2....1..2....2..1....1..2....1..2....2..2....2..1....2..1....1..1

%e ..2..0....1..2....2..2....0..1....0..0....2..2....0..1....2..1....0..2....1..1

%Y Cf. A208434.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 26 2012