login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 5Xn 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors
2

%I #5 Mar 31 2012 12:37:23

%S 51,43947,42012698,40595679634,39216100214432,37884515848419250,

%T 36598079445605633928,35355330691346872093058,

%U 34154781271350993450819306,32994998532336627831187653984,31874598155583932774268114331038

%N Number of 5Xn 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors

%C Row 5 of A208408

%H R. H. Hardin, <a href="/A208412/b208412.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 846*a(n-1) +113055*a(n-2) +2929874*a(n-3) -109060673*a(n-4) -3622824692*a(n-5) +65097142029*a(n-6) +1105024278376*a(n-7) -27292434557458*a(n-8) +142062088508752*a(n-9) +377948844669748*a(n-10) -4808916389539500*a(n-11) +4645157287758163*a(n-12) +52333669611524778*a(n-13) -120575382680010711*a(n-14) -210993332876225106*a(n-15) +842794866719196543*a(n-16) +23751649411434324*a(n-17) -2346267769038080739*a(n-18) +1537588828184004828*a(n-19) +2261528701157029077*a(n-20) -2074597977196235322*a(n-21) -1044955823075183619*a(n-22) +1037909226733865982*a(n-23) +266013779180313879*a(n-24) -226004933703781188*a(n-25) -35288827553849769*a(n-26) +20872926611932608*a(n-27) +1881175972889916*a(n-28) -620089737873840*a(n-29) for n>32

%e Some solutions for n=4

%e ..0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0

%e ..1..0..2..1....0..1..1..2....0..1..0..1....0..1..1..1....0..1..0..1

%e ..0..1..0..2....1..0..1..3....0..1..1..0....0..0..0..1....1..2..0..2

%e ..2..1..0..3....1..3..3..1....0..2..1..2....0..1..0..0....0..1..0..3

%e ..1..0..1..0....1..3..0..1....3..3..0..3....0..1..1..1....2..2..1..2

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 26 2012