%I #9 Jul 02 2018 05:46:01
%S 16,256,704,1344,2176,3200,4416,5824,7424,9216,11200,13376,15744,
%T 18304,21056,24000,27136,30464,33984,37696,41600,45696,49984,54464,
%U 59136,64000,69056,74304,79744,85376,91200,97216,103424,109824,116416,123200,130176
%N Number of n X 5 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 1 0 1 vertically.
%C Column 5 of A208379.
%H R. H. Hardin, <a href="/A208376/b208376.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 96*n^2  32*n  64 for n>1.
%F Conjectures from _Colin Barker_, Jul 02 2018: (Start)
%F G.f.: 16*x*(1 + 13*x  x^2  x^3) / (1  x)^3.
%F a(n) = 3*a(n1)  3*a(n2) + a(n3) for n>4.
%F (End)
%e Some solutions for n=4:
%e ..1..1..0..0..1....0..1..0..1..1....1..0..1..0..0....1..1..0..0..1
%e ..0..0..1..1..0....1..0..1..0..1....1..0..1..1..0....1..0..1..0..0
%e ..0..0..1..0..0....0..0..1..0..0....0..0..1..0..0....1..0..1..0..0
%e ..0..0..1..0..0....0..0..1..0..0....0..0..1..0..0....0..0..1..0..0
%Y Cf. A208379.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 25 2012
