login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) is the number of n X k 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
9

%I #11 Oct 15 2024 15:42:10

%S 1,2,2,5,15,5,15,100,100,15,51,868,1095,868,51,187,7780,12625,12625,

%T 7780,187,715,69988,153237,230387,153237,69988,715,2795,629860,

%U 1901508,4773885,4773885,1901508,629860,2795,11051,5668708,23658861,103672036

%N T(n,k) is the number of n X k 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

%H R. H. Hardin, <a href="/A208353/b208353.txt">Table of n, a(n) for n = 1..83</a>

%e Table starts:

%e ....1.......2.........5..........15.............51............187

%e ....2......15.......100.........868...........7780..........69988

%e ....5.....100......1095.......12625.........153237........1901508

%e ...15.....868.....12625......230387........4773885......103672036

%e ...51....7780....153237.....4773885......191586797.....8045978096

%e ..187...69988...1901508...103672036.....8045978096...647640659639

%e ..715..629860..23658861..2280287753...340596199800.52428246114853

%e .2795.5668708.294608660.50481169071.14513602070899

%e Some solutions for n=4 and k=3:

%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..0..0....0..0..0

%e ..1..0..1....1..1..1....1..2..1....1..1..1....1..2..2....1..1..1....1..0..1

%e ..2..1..2....2..1..2....2..1..3....2..1..2....3..2..2....2..1..2....2..2..2

%e ..1..2..1....3..2..3....0..0..1....0..2..0....1..3..0....3..2..0....1..2..3

%Y Main diagonal is A208346.

%Y Columns 1..7 are A007581(n-1), A208347, A208348, A208349, A208350, A208351, A208352.

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Feb 25 2012