Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 30 2018 14:54:01
%S 4,18,78,336,1446,6222,26772,115194,495654,2132688,9176478,39484326,
%T 169892196,731008002,3145363422,13533793104,58232875254,250562996958,
%U 1078116359028,4638892804266,19960114944246,85883896308432
%N Number of n X 3 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than one of its immediate leftward or upward neighbors.
%C Column 3 of A208314.
%H R. H. Hardin, <a href="/A208309/b208309.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) - 3*a(n-2).
%F Conjectures from _Colin Barker_, Jun 30 2018: (Start)
%F G.f.: 2*x*(2 - x) / (1 - 5*x + 3*x^2).
%F a(n) = (2^(-n)*((5-sqrt(13))^n*(-7+sqrt(13)) + (5+sqrt(13))^n*(7+sqrt(13)))) / (3*sqrt(13)).
%F (End)
%e Some solutions for n=4:
%e ..0..1..0....0..0..0....0..1..1....0..1..1....0..1..1....0..1..0....0..0..0
%e ..1..0..1....1..0..1....1..0..1....1..0..0....0..1..0....1..0..1....0..1..1
%e ..0..1..0....0..1..0....1..1..0....1..1..1....0..1..1....1..0..1....1..0..1
%e ..1..0..1....0..0..1....1..0..1....1..0..1....0..1..0....1..1..0....0..1..0
%Y Cf. A208314.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 25 2012