%I #27 Feb 15 2013 08:49:46
%S 1,1,1,4,20,120,168,1344,1512,1920,7920,95040,95040
%N Maximum order of a subgroup of the symmetric group of degree n that contains no 2-cycle and no 3-cycle.
%H MathOverflow, <a href="http://mathoverflow.net/questions/118494">Largest permutation group without 2-cycles or 3-cycles</a>
%e a(4) = 4 since the subgroups of S_4 up to conjugation as computed by GAP are:
%e H(1) = { ()}
%e H(2) = { (), (1,3)(2,4)}
%e H(3) = { (), (3,4)}
%e H(4) = { (), (2,3,4), (2,4,3)}
%e H(5) = { (), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}
%e H(6) = { (), (3,4), (1,2), (1,2)(3,4)}
%e H(7) = { (), (1,2)(3,4), (1,3,2,4), (1,4,2,3)}
%e H(8) = { (), (3,4),(2,3), (2,3,4), (2,4,3), (2,4)}
%e H(9) = { (), (3,4), (1,2), (1,2)(3,4), (1,3)(2,4), (1,3,2,4), (1,4,2,3), (1,4)(2,3)}
%e H(10) = { (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3)}
%e H(11) = { (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4), (1,4,2,3), (1,4)(2,3)}
%e Only H(1), H(2), H(5) and H(7) contain neither 2-cycle nor 3-cycle and the largest of these groups has order 4.
%e I use here the GAP convention of writing cycles with commas.
%o (GAP)
%o Has23:=function(G,n)
%o local x,p;
%o for p in Elements(G) do
%o x:=Product(CycleLengths(p,[1..n]));
%o if x = 2 or x = 3 then return true; fi;
%o od;
%o return false;
%o end;;
%o a:=function(n)
%o local MM,h,nn;
%o MM:=0;;
%o for H in ConjugacyClassesSubgroups(SymmetricGroup(n)) do
%o h:=Representative(H);
%o if Size(h)<=MM then continue; fi;
%o if Has23(h,n) = false then
%o nn:=Size(h);
%o if nn > MM then MM:=nn; Mg:=h; fi;
%o fi;
%o od;;
%o return MM;
%o end;;
%Y Cf. A208235.
%K nonn,more
%O 1,4
%A _W. Edwin Clark_, Jan 10 2013
%E a(10)-a(13) from _Stephen A. Silver_, Feb 14 2013