|
|
A208104
|
|
Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically.
|
|
1
|
|
|
9, 81, 169, 361, 841, 2025, 5041, 12769, 32761, 84681, 219961, 573049, 1495729, 3908529, 10220809, 26739241, 69973225, 183142089, 479391025, 1254930625, 3285238489, 8600522121, 22515902809, 58946498521, 154322479921, 404019140625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 4*a(n-1) - 2*a(n-2) - 6*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) for n>7.
Empirical g.f.: x*(9 + 45*x - 137*x^2 - 99*x^3 + 185*x^4 + 55*x^5 - 40*x^6) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)). - Colin Barker, Jun 28 2018
|
|
EXAMPLE
|
Some solutions for n=10:
..1..1..0..1....1..1..0..1....0..1..1..1....0..1..1..0....0..0..1..1
..0..1..1..1....1..1..0..0....0..1..1..0....0..1..1..1....1..1..1..0
..1..1..0..1....1..1..0..1....0..1..1..1....1..1..1..0....0..0..1..1
..0..1..1..1....1..1..0..0....0..1..1..0....0..1..1..0....0..1..1..0
..1..1..0..1....1..1..1..1....1..1..1..1....1..1..1..1....1..0..1..1
..0..1..1..1....1..1..0..0....0..1..1..0....0..1..1..0....0..1..1..0
..1..1..0..1....1..1..1..1....1..1..1..1....1..1..1..1....1..0..1..1
..0..1..1..1....1..1..0..0....0..1..1..0....0..1..1..0....0..1..1..0
..1..1..0..1....1..1..0..1....1..1..1..0....0..1..1..1....1..0..1..1
..0..1..1..1....1..1..0..0....0..1..1..0....1..1..1..0....0..1..1..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|