login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208057
Triangle by rows, generated from the odd integers and related to A000165.
3
1, 1, 1, 4, 3, 1, 24, 18, 5, 1, 192, 144, 40, 7, 1, 1920, 1440, 400, 70, 9, 1, 23040, 17280, 4800, 840, 108, 11, 1, 322560, 241920, 67200, 11760, 1512, 154, 13, 1, 5160960, 3870720, 1075200, 188160, 24192, 2464, 208, 15, 1
OFFSET
0,4
COMMENTS
Row sums = A000165, the double factorial numbers: (1, 2, 8, 48, 384,...).
Left border = A002866 and the eigensequence of the odd integers prefaced with a 1.
LINKS
FORMULA
Eigentriangle of triangle A158405 (odd integers in every row: (1, 3, 5,...); the inverse of:
1;
-1, 1;
-1, -3, 1;
-1, -3, -5, 1;
-1, -3, -5, -7, 1;
...
EXAMPLE
First few rows of the triangle =
1;
1, 1;
4, 3, 1;
24, 18, 5, 1;
192, 144, 40, 7, 1;
1920, 1440, 400, 70, 9, 1;
23040, 17280, 4800, 840, 108, 11, 1;
322560, 241920, 67200, 11760, 1512, 154, 13, 1;
...
MAPLE
T:= proc(n) option remember; local M;
M:= (Matrix(n+1, (i, j)-> `if`(i=j, 1, `if`(i>j, -2*j+1, 0)))^(-1));
seq(M[n+1, k], k=1..n+1)
end:
seq(T(n), n=0..10); # Alois P. Heinz, Feb 27 2012
MATHEMATICA
T[n_] := T[n] = Module[{M}, M = Table[If[i == j, 1, If[i>j, -2*j+1, 0]], {i, 1, n+1 }, {j, 1, n+1}] // Inverse; M[[n+1]]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 22 2012
EXTENSIONS
Typo in term 17 corrected by Alois P. Heinz, Dec 06 2012
STATUS
approved