|
|
A208015
|
|
Number of 5 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 0 1 1 vertically.
|
|
1
|
|
|
12, 144, 420, 1943, 5952, 16224, 55624, 181192, 545140, 1737120, 5591900, 17461000, 55016920, 175036148, 552196708, 1741059012, 5511897568, 17422085700, 55006038672, 173881945232, 549639384692, 1736473292204, 5487493400532
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = a(n-1) + 23*a(n-3) + 6*a(n-4) + 6*a(n-5) - 108*a(n-6) - 72*a(n-7) + 216*a(n-9) for n>11.
Empirical g.f.: x*(12 + 132*x + 276*x^2 + 1247*x^3 + 625*x^4 - 324*x^5 - 7377*x^6 - 9090*x^7 - 846*x^8 + 17064*x^9 + 7884*x^10) / (1 - x - 23*x^3 - 6*x^4 - 6*x^5 + 108*x^6 + 72*x^7 - 216*x^9). - Colin Barker, Jun 26 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..1..0..0..1....0..1..1..1....0..0..1..0....1..1..0..0....0..0..1..1
..0..1..1..0....0..1..1..0....0..1..1..1....1..1..1..0....1..1..1..0
..1..0..0..1....0..1..0..0....0..0..1..0....0..1..0..0....0..0..1..0
..0..1..1..0....0..0..1..0....0..1..0..0....1..1..1..0....1..1..0..0
..1..0..0..1....0..1..0..0....0..0..1..0....0..1..0..0....0..0..1..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|