login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX7 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically
1

%I #5 Mar 31 2012 12:37:20

%S 20,400,2340,18330,133812,1007146,7513176,56114310,418757982,

%T 3126019338,23335656728,174203347410,1300429210274,9707701033916,

%U 72467964696512,540973578440920,4038369684995910,30146442775842786,225043284353552098

%N Number of nX7 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically

%C Column 7 of A207949

%H R. H. Hardin, <a href="/A207948/b207948.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) +3*a(n-2) +8*a(n-3) +303*a(n-4) +385*a(n-5) +871*a(n-6) +4356*a(n-7) +5282*a(n-8) +3375*a(n-9) +4096*a(n-10) -4422*a(n-11) -32005*a(n-12) -63696*a(n-13) -35314*a(n-14) +48358*a(n-15) +111187*a(n-16) +82219*a(n-17) -21414*a(n-18) -76099*a(n-19) -68521*a(n-20) -1500*a(n-21) +23855*a(n-22) +27908*a(n-23) +3257*a(n-24) -2887*a(n-25) -6127*a(n-26) -714*a(n-27) -94*a(n-28) +735*a(n-29) +43*a(n-30) +42*a(n-31) -45*a(n-32) -2*a(n-34) +a(n-35)

%e Some solutions for n=4

%e ..0..1..0..0..0..0..0....1..0..1..0..1..0..0....1..1..1..0..1..0..0

%e ..1..1..1..0..0..0..0....0..1..0..0..0..0..0....0..0..0..0..0..0..0

%e ..1..0..1..0..0..0..0....0..1..0..1..0..1..0....0..0..0..0..0..0..0

%e ..1..0..0..0..0..0..0....0..1..0..1..0..1..0....1..1..1..0..0..0..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 21 2012