%I #5 Mar 31 2012 12:37:20
%S 6,36,102,261,611,1278,2625,5134,9798,18414,33947,62049,112332,201925,
%T 361298,643452,1142526,2023513,3576387,6311690,11124765,19589642,
%U 34469830,60616350,106548039,187215857,328865096,577561897,1014154398
%N Number of nX3 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 0 1 1 vertically
%C Column 3 of A207908
%H R. H. Hardin, <a href="/A207903/b207903.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) -4*a(n-3) -5*a(n-4) +9*a(n-5) +3*a(n-6) -2*a(n-7) -5*a(n-8) +2*a(n-9) -2*a(n-10) +a(n-11) +a(n-12) +a(n-13) -a(n-14)
%e Some solutions for n=4
%e ..0..0..1....0..1..1....1..0..0....0..1..1....0..0..1....0..1..1....1..0..0
%e ..1..0..0....1..1..0....0..1..1....1..0..0....1..0..1....1..0..1....0..0..1
%e ..0..1..1....0..0..1....1..0..0....0..0..1....0..1..1....0..1..1....1..1..0
%e ..1..0..0....1..0..0....0..0..1....1..1..0....0..0..1....1..0..1....0..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 21 2012