%I #14 Oct 02 2024 13:22:56
%S 2,4,9,17,19,25,27,30,40,43,46,53,56,59,61,67,69,72,77,82,85,93,95,98,
%T 101,103,108,111,114,119,124,129,135,137,140,150,153,161,166,169,171,
%U 177,179,182,187,195,197,205,208,211,213,218,224,229,237,239
%N Numbers that match irreducible Zeckendorf polynomials.
%C The Zeckendorf representation of a positive integer n is a unique sum
%C c(k-2)F(k) + c(k-3)F(k-1) + ... + c(1)F(3) + c(0)F(2),
%C where F=A000045 (Fibonacci numbers), c(k-2)=1, and for j=0,1,...,k-3, there are two restrictions on coefficients: c(j) is 0 or 1, and c(j)c(j+1)=0; viz., no two consecutive Fibonacci numbers appear. The Zeckendorf polynomial Z(n,x) is introduced here as
%C c(k-2)x^(k-2) + c(k-3)x^(k-3) + ... + c(1)x + c(0).
%C The name refers to irreducibility over the field of rational numbers.
%e n k Z(n) Z(n,x) irreducible
%e 1 2 1 1 no
%e 2 3 10 x yes
%e 3 4 100 x^2 no
%e 4 4 101 x^2 + 1 yes
%e 5 5 1000 x^3 no
%e 6 5 1001 x^3 + 1 no
%e 7 5 1010 x^3 + x no
%e 8 5 10000 x^4 no
%e 9 5 10001 x^4 + 1 yes
%t fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]],
%t t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k],
%t AppendTo[fr, 1]; t = t - Fibonacci[k],
%t AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n],
%t {n, 1, 350}];
%t b[n_] := Reverse[Table[x^k, {k, 0, n}]]
%t p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
%t Table[p[n, x], {n, 1, 40}] (* Zeckendorf polynomials *)
%t u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]],
%t AppendTo[u, n]], {n, 300}]; u (* A207813 *)
%Y Cf. A206073, A206074.
%K nonn,base
%O 1,1
%A _Clark Kimberling_, Feb 20 2012