login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207769
Number of n X 3 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 0 1 0 vertically.
1
6, 36, 84, 192, 450, 972, 2040, 4278, 8910, 18462, 38214, 79044, 163386, 337638, 697668, 1441488, 2978208, 6153084, 12712374, 26263824, 54261060, 112103226, 231604842, 478494570, 988567506, 2042375592, 4219537710, 8717543538
OFFSET
1,1
COMMENTS
Column 3 of A207774.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - 2*a(n-4) + a(n-6) for n>7.
Empirical g.f.: 6*x*(1 + 3*x - 2*x^2 + x^3 + 3*x^4 - x^5 - x^6) / ((1 - x)^2*(1 - x - x^2 - 2*x^3 - x^4)). - Colin Barker, Jun 25 2018
EXAMPLE
Some solutions for n=4:
..1..1..0....0..1..0....1..1..0....0..0..1....0..0..1....1..1..0....1..1..0
..1..0..1....1..0..0....1..1..0....1..0..0....0..1..1....1..1..0....0..1..0
..1..0..1....1..1..0....0..1..0....1..0..1....0..1..1....1..1..0....1..1..0
..0..0..1....0..1..0....0..1..0....0..0..1....0..1..0....0..1..0....1..0..0
CROSSREFS
Cf. A207774.
Sequence in context: A207270 A207763 A207347 * A207896 A207656 A207341
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 20 2012
STATUS
approved