%I #5 Mar 31 2012 12:37:19
%S 2,4,4,6,16,6,10,36,36,9,16,100,114,81,14,26,256,450,387,196,22,42,
%T 676,1644,2205,1414,484,35,68,1764,6186,12015,11970,5302,1225,56,110,
%U 4624,23010,66339,97580,66946,20265,3136,90,178,12100,85992,364869,805154
%N T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 0 vertically
%C Table starts
%C ..2....4.....6......10.......16.........26..........42............68
%C ..4...16....36.....100......256........676........1764..........4624
%C ..6...36...114.....450.....1644.......6186.......23010.........85992
%C ..9...81...387....2205....12015......66339......364869.......2009223
%C .14..196..1414...11970....97580.....805154.....6614706......54438356
%C .22..484..5302...66946...820820...10150118...125165018....1545006848
%C .35.1225.20265..383845..7070805..131365535..2433018665...45118588165
%C .56.3136.78120.2221688.61530000.1717508184.47808913432.1332236625328
%H R. H. Hardin, <a href="/A207717/b207717.txt">Table of n, a(n) for n = 1..763</a>
%e Some solutions for n=4 k=3
%e ..1..1..1....1..1..1....1..0..1....0..1..0....1..0..0....1..0..1....1..0..1
%e ..1..1..1....0..1..1....1..1..1....0..1..1....0..1..1....0..1..1....0..1..0
%e ..1..1..1....1..1..1....0..1..0....0..1..1....1..1..0....1..0..0....1..1..1
%e ..1..1..0....0..1..1....1..0..1....0..1..0....1..1..1....1..1..1....1..1..1
%Y Column 1 is A001611(n+2)
%Y Column 2 is A207436
%Y Row 1 is A006355(n+2)
%Y Row 2 is A206981
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Feb 19 2012