login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1+x^k)/(1-x^k).
4

%I #35 Mar 12 2021 22:24:46

%S 1,1,3,5,9,15,25,39,61,93,139,205,299,429,611,861,1201,1663,2285,3115,

%T 4221,5683,7605,10123,13405,17661,23163,30245,39323,50925,65699,84445,

%U 108167,138089,175719,222921,281965,355627,447309,561139,702133,876395,1091301

%N G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1+x^k)/(1-x^k).

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C In Ramanujan's equation let a = x and b = 1. - _Michael Somos_, Nov 20 2015

%D Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 370, 9th equation.

%H Seiichi Manyama, <a href="/A207641/b207641.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..750 from Vaclav Kotesovec)

%H Frank Garvan, <a href="http://www.combinatorics.net/conf/A75/Slides/02_03_Garvan.pdf">Dyson's rank function and Andrews's SPT-function</a>, slides 29, 30.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of 1 / ((1 + x) * phi(-x)) in powers of x where phi() is a Ramanujan theta function. - _Michael Somos_, Nov 20 2015

%F G.f.: 1 + x*(1+x) * (1 / (1-x)^2 + 2*x^3 / ((1-x)*(1-x^2))^2 + 2*x^7*(1+x) / ((1-x)*(1-x^2)*(1-x^3))^2 + 2*x^12*(1+x)*(1+x^2) / ((1-x)*(1-x^2)*(1-x^3)*(1-x^4))^2 + ...). [Ramanujan] - _Michael Somos_, Nov 20 2015

%F a(n) + a(n+1) = A015128(n+1) for n >= 0. - _Seiichi Manyama_, Jul 12 2018

%F a(n) ~ exp(Pi*sqrt(n)) / (16*n). - _Vaclav Kotesovec_, Jun 18 2019

%e G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 9*x^4 + 15*x^5 + 25*x^6 + 39*x^7 +...

%e such that, by definition,

%e A(x) = 1 + x*(1+x)/(1-x) + x^2*(1+x)*(1+x^2)/((1-x)*(1-x^2)) + x^3*(1+x)*(1+x^2)*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)) +...

%t a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-x}, {}, x, x], {x, 0, n}]; (* _Michael Somos_, Mar 11 2014 *)

%t a[ n_] := SeriesCoefficient[ 1 / ((1 + x) EllipticTheta[ 4, 0, x]), {x, 0, n}]; (* _Michael Somos_, Nov 20 2015 *)

%o (PARI) {a(n)=polcoeff(sum(m=0,n,x^m*prod(k=1,m,(1+x^k)/(1-x^k +x*O(x^n))) ),n)}

%o for(n=0,50,print1(a(n),", "))

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / ((1 + x) * eta(x + A)^2), n))}; /* _Michael Somos_, Nov 20 2015 */

%Y Cf. A015128, A059777.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 19 2012