Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 19 2024 12:02:27
%S 1,2,1,3,2,1,5,4,2,1,8,8,5,2,1,13,15,11,6,2,1,21,28,23,14,7,2,1,34,51,
%T 47,32,17,8,2,1,55,92,93,70,42,20,9,2,1,89,164,181,148,97,53,23,10,2,
%U 1,144,290,346,306,217,128,65,26,11,2,1,233,509,653,619,472
%N Triangle of coefficients of polynomials v(n,x) jointly generated with A207610; see Formula section.
%C Column 1: Fibonacci numbers, A000045
%C Column 2: A029907
%C Row sums: A003945.
%C For a discussion and guide to related arrays, see A208510.
%C Subtriangle of the triangle given by (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 25 2012
%F u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = u(n-1,x) + x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1.
%F T(n,k) = T(n-1,k) + (n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(1,0) = T(2,1) = 1, T(2,0) = 2 and T(n,k) = 0 if k < 0 or if k >= n.
%e First five rows:
%e 1;
%e 2, 1;
%e 3, 2, 1;
%e 5, 4, 2, 1;
%e 8, 8, 5, 2, 1;
%e From _Philippe Deléham_, Mar 25 2012: (Start)
%e (0, 2, -1/2, -1/2, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, ...) begins:
%e 1;
%e 0, 1;
%e 0, 2, 1;
%e 0, 3, 2, 1;
%e 0, 5, 4, 2, 1;
%e 0, 8, 8, 5, 2, 1;
%e 0, 13, 15, 11, 6, 2, 1;
%e 0, 21, 28, 23, 14, 7, 2, 1; (End)
%t u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t u[n_, x_] := u[n - 1, x] + v[n - 1, x]
%t v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1
%t Table[Factor[u[n, x]], {n, 1, z}]
%t Table[Factor[v[n, x]], {n, 1, z}]
%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t TableForm[cu]
%t Flatten[%] (* A207610 *)
%t Table[Expand[v[n, x]], {n, 1, z}]
%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t TableForm[cv]
%t Flatten[%] (* A207611 *)
%t T[ n_, k_] := Which[k<0 || n<0, 0, n<2, Boole[k<=n] + Boole[k==0&&n==1], True, T[n, k] = T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1] ]; (* _Michael Somos_, Sep 19 2024 *)
%o (Python)
%o from sympy import Poly
%o from sympy.abc import x
%o def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
%o def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
%o def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
%o for n in range(1, 13): print(a(n)) # _Indranil Ghosh_, May 28 2017
%o (PARI) {T(n, k) = if(k<0 || n<0, 0, n<2, (k<=n) + (k==0 && n==1), T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-2, k-1) )}; /* _Michael Somos_, Sep 19 2024 */
%Y Cf. A207610, A208510.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Feb 19 2012