login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207552
Number of 4Xn 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal
1
75, 5625, 327899, 18584111, 1058580304, 60409681388, 3444706587880, 196394845077515, 11195823351575374, 638229931665914988, 36382525031488738507, 2073995028464244989213, 118228412844652091729417
OFFSET
1,1
COMMENTS
Row 4 of A207550
LINKS
FORMULA
Empirical: a(n) = 75*a(n-1) -279*a(n-2) -55870*a(n-3) +619132*a(n-4) +10624995*a(n-5) -156435360*a(n-6) +39418367*a(n-7) +5687446019*a(n-8) -21387539810*a(n-9) -181413061607*a(n-10) -8122558142777*a(n-11) +174711294553294*a(n-12) +271009683894939*a(n-13) -17128383533321188*a(n-14) +48859766137607182*a(n-15) +461407352658224631*a(n-16) -2945675982691138809*a(n-17) +80741757045081747*a(n-18) +40694340239333081561*a(n-19) +157436282168932316087*a(n-20) -42613038335884776174*a(n-21) -12555254076232039300039*a(n-22) -398520064754470669298*a(n-23) +98261567049022818742453*a(n-24) +385220149334799454031470*a(n-25) +1694946849392014061968803*a(n-26) -6898177055859138399041213*a(n-27) +10382419400329305661128592*a(n-28) -32486113181923436526347669*a(n-29) -91335785940915840531363442*a(n-30) -113684752291904604808932379*a(n-31) -9385342750282519992420459634*a(n-32) -5962984156845168458650601941*a(n-33) -3290052418044587020636101133*a(n-34) +390431134543126408967068386996*a(n-35) +1671332411744587959635356602825*a(n-36) +605817399675182945833734501379*a(n-37) -5394700124761981852860687818580*a(n-38) -38891579765757791265654651009506*a(n-39) -85254942373459529111094361622908*a(n-40) +88138047110638120620395065197599*a(n-41) +494917417422017700927771301664685*a(n-42) +730895329783806063136778873718495*a(n-43) +44342324913932344382625405651072*a(n-44) -2661994706130840361481235753607186*a(n-45) -3911211545863208522953734063754091*a(n-46) +694006368783166401443310548945392*a(n-47) +4553798909030774318377963641677907*a(n-48) -3095976452858854702138090405407431*a(n-49) -5271152450140277198264725519192111*a(n-50) +20511134636727946507199026102941950*a(n-51) -3239231917823883733378987130418937*a(n-52) -19126308441097367758751736218169813*a(n-53) +115334926904709129120726579154421370*a(n-54) +149382584193469641170827505193901082*a(n-55) -7496484819143085850598439939157585*a(n-56) -378514228457350956384509768199380974*a(n-57) -272147270677516132958521543918559547*a(n-58) +444632620936963019767786610781319087*a(n-59) -682480346100455227127760311024682326*a(n-60) -1146244761251614560376306626539376217*a(n-61) +1003565192705309430616062069158959327*a(n-62) +812021949941329528016210005819004900*a(n-63) +85289222154913494869354114685081364*a(n-64) +496696181001264855780427345598595524*a(n-65) -35495667004939466785691099443265075*a(n-66) +362274493206232460059329428250869320*a(n-67) +200200088399602607233798737566898311*a(n-68) -724099300431597339511136441697717175*a(n-69) -531801599121338912985168632281238844*a(n-70) -302908746969740988440308774718603739*a(n-71) -80628939194816129553497724120399695*a(n-72) +298348511932512499268012191150119774*a(n-73) +264531003513916653200178954689258607*a(n-74) +91075357585036134921702117644612217*a(n-75) +8283986612308793542747753431284049*a(n-76) -23715390868357358678749908455870388*a(n-77) -4323514054082035821393595296901788*a(n-78) -978421399443985871460393582212952*a(n-79) +591619497879209549755509425398320*a(n-80) -10477109907725865000820036210944*a(n-81) -58252279609612899809401165458480*a(n-82) -15192438392839658696670214502784*a(n-83) -506772856534295798758574513280*a(n-84) -1220373945635059110430859592960*a(n-85) for n>88
EXAMPLE
Some solutions for n=4
..1..2..2..2....2..0..2..1....0..1..0..1....0..2..2..2....0..2..2..0
..1..2..2..2....1..1..1..0....2..2..0..0....1..1..0..2....1..0..0..0
..1..2..1..1....0..1..0..0....0..2..2..0....0..0..1..0....0..2..1..2
..1..2..1..1....0..0..0..2....0..1..0..1....1..2..0..2....0..0..0..0
CROSSREFS
Sequence in context: A324452 A110902 A207546 * A207313 A206696 A248545
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 18 2012
STATUS
approved