login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Number of n X k 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.
12

%I #9 Mar 24 2023 09:52:21

%S 3,9,9,26,81,26,75,676,676,75,216,5625,14974,5625,216,622,46656,

%T 327518,327899,46656,622,1791,386884,7169168,18584111,7104784,386884,

%U 1791,5157,3207681,156957792,1058580304,1033847229,153718531,3207681,5157,14849

%N T(n,k) = Number of n X k 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column, nw-to-se diagonal or ne-to-sw antidiagonal.

%C Table starts

%C ....3........9..........26..............75................216

%C ....9.......81.........676............5625..............46656

%C ...26......676.......14974..........327518............7169168

%C ...75.....5625......327899........18584111.........1058580304

%C ..216....46656.....7104784......1033847229.......151596413811

%C ..622...386884...153718531.....57282563287.....21553876840265

%C .1791..3207681..3323115736...3168082336959...3054158366460488

%C .5157.26594649.71828785449.175129179194410.432330439527473859

%H R. H. Hardin, <a href="/A207550/b207550.txt">Table of n, a(n) for n = 1..127</a>

%e Some solutions for n=4, k=3

%e ..2..2..1....0..0..0....2..0..2....1..0..1....2..1..2....1..2..2....2..0..1

%e ..2..0..0....2..0..2....1..1..1....2..0..2....1..2..1....0..0..1....0..0..2

%e ..2..0..0....2..0..1....1..0..0....0..2..2....0..2..1....1..2..0....1..1..2

%e ..2..2..2....0..0..0....1..2..2....2..0..2....1..1..2....1..2..1....0..0..1

%Y Column 1 is A076264.

%Y Column 2 is A206694.

%Y Row 1 is A076264.

%Y Row 2 is A206694.

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 18 2012