|
|
A207509
|
|
Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 1 vertically.
|
|
2
|
|
|
6, 36, 72, 166, 360, 660, 1292, 2400, 4396, 8096, 14580, 26346, 47336, 84502, 150976, 268594, 477130, 846850, 1500112, 2655880, 4697786, 8303004, 14669200, 25901790, 45719422, 80675866, 142317030, 251007562, 442623618, 780396916, 1375769956
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 2*a(n-1) + 2*a(n-3) - 5*a(n-4) + a(n-5) - 4*a(n-6) + 5*a(n-7) - a(n-8) + 2*a(n-9) - a(n-10) for n>11.
Empirical g.f.: 2*x*(3 + 12*x + 5*x^3 - 7*x^4 - 15*x^5 - 6*x^6 - 16*x^7 + 12*x^8 - 6*x^9 + 2*x^10) / ((1 - x)*(1 - x - x^3)*(1 - x^2 - 3*x^3 - x^4 - x^5 + x^6)). - Colin Barker, Mar 05 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..0..1..0....0..1..0....0..0..1....0..0..1....0..0..1....1..1..1....1..1..0
..1..1..1....0..0..1....1..0..0....1..0..1....1..0..0....1..1..0....1..1..1
..1..0..0....0..1..0....0..0..1....1..0..0....1..0..1....0..0..1....0..0..1
..0..0..1....0..1..0....1..0..0....0..0..1....0..0..1....1..1..1....1..1..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|