Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #5 Mar 31 2012 12:37:17
%S 16,256,784,3844,14884,42849,142884,393129,1067089,2839225,7059649,
%T 17489124,41847961,97970404,226171521,511302544,1141764100,2515122801,
%U 5472448576,11789182084,25139688025,53146847296,111453819409
%N Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 0 1 1 vertically
%C Row 6 of A207368
%H R. H. Hardin, <a href="/A207371/b207371.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) -7*a(n-2) -15*a(n-3) +4*a(n-4) +98*a(n-5) -47*a(n-6) -173*a(n-7) -95*a(n-8) +424*a(n-9) +118*a(n-10) -170*a(n-11) -483*a(n-12) +180*a(n-13) -177*a(n-14) +465*a(n-15) +110*a(n-16) +412*a(n-17) -805*a(n-18) +63*a(n-19) -392*a(n-20) +462*a(n-21) -217*a(n-22) +625*a(n-23) -324*a(n-24) +154*a(n-25) -367*a(n-26) +207*a(n-27) -225*a(n-28) +204*a(n-29) -74*a(n-30) +102*a(n-31) -82*a(n-32) +50*a(n-33) -44*a(n-34) +18*a(n-35) -11*a(n-36) +10*a(n-37) -5*a(n-38) +3*a(n-39) -a(n-40)
%e Some solutions for n=4
%e ..0..0..1..0....0..1..0..1....1..1..1..0....1..0..0..1....1..0..0..1
%e ..1..1..1..1....0..1..0..0....0..1..0..1....0..1..0..0....1..1..1..1
%e ..0..0..1..0....0..1..0..1....1..0..1..0....1..0..0..1....1..0..0..1
%e ..0..0..1..0....0..1..0..0....0..1..0..1....0..1..0..0....0..1..0..1
%e ..0..0..1..0....0..1..0..1....0..0..1..0....1..0..0..1....1..0..0..1
%e ..0..0..1..0....0..1..0..0....0..1..0..1....0..1..0..0....0..1..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 17 2012