login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column or nw-to-se diagonal
7

%I #7 May 17 2013 13:39:57

%S 3,9,9,26,81,26,75,676,676,75,216,5625,15390,5625,216,622,46656,

%T 347502,347502,46656,622,1791,386884,7791488,21162579,7791488,386884,

%U 1791,5157,3207681,174545777,1274682671,1274682671,174545777,3207681,5157,14849

%N T(n,k)=Number of nXk 0..2 arrays avoiding the pattern z-2 z-1 z in any row, column or nw-to-se diagonal

%C Table starts

%C ....3........9..........26..............75................216

%C ....9.......81.........676............5625..............46656

%C ...26......676.......15390..........347502............7791488

%C ...75.....5625......347502........21162579.........1274682671

%C ..216....46656.....7791488......1274682671.......205235353935

%C ..622...386884...174545777.....76655305645.....32960886054362

%C .1791..3207681..3908531208...4606553380932...5287481507599689

%C .5157.26594649.87515884741.276789915709747.847996342709895834

%H R. H. Hardin, <a href="/A207317/b207317.txt">Table of n, a(n) for n = 1..180</a>

%e Some solutions for n=4 k=3

%e ..2..0..1....2..0..2....0..0..2....2..2..2....2..2..1....2..2..0....2..1..2

%e ..2..0..2....1..1..1....0..0..2....1..2..1....2..0..2....0..0..2....1..2..1

%e ..1..0..2....1..0..0....0..0..0....0..2..2....2..2..0....2..0..0....0..2..1

%e ..1..2..1....1..2..2....1..2..0....0..0..2....0..2..1....1..0..1....1..1..2

%Y Column 1 is A076264

%Y Column 2 is A206694

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Feb 16 2012