login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k ).
5

%I #8 Sep 07 2013 20:34:34

%S 1,1,2,4,17,171,3171,101741,7181615,1274607729,428568152553,

%T 223160743256395,185627109707405932,320952534083059792786,

%U 1367454166673309618606950,11078799748881429582280609036,137939599816546528357634500253053,2679390013936303204526656964298150849

%N G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k ).

%C The logarithmic derivative yields A207138.

%C Equals the antidiagonal sums of triangle A228900.

%e G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...

%e where the logarithm of the g.f. equals the l.g.f. of A207138:

%e log(A(x)) = x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...

%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n,x^m/m*sum(k=0,m,binomial(m^2,k*(m-k))*x^k))+x*O(x^n)),n)}

%o for(n=0,25,print1(a(n),", "))

%Y Cf. A207138 (log), A207135, A228900, A206850, A206830, A167006.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 15 2012