login
Number of 0..5 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 6
1

%I #5 Mar 31 2012 12:37:15

%S 6,21,75,274,989,3579,12964,46952,170076,616065,2231527,8083084,

%T 29278684,106053662,384149029,1391469865,5040201168,18256685634,

%U 66129616610,239535602559,867649138787,3142810588438,11383931537547,41235032657415

%N Number of 0..5 arrays x(0..n-1) of n elements with each no smaller than the sum of its two previous neighbors modulo 6

%C Column 5 of A207100

%H R. H. Hardin, <a href="/A207097/b207097.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) -4*a(n-3) -5*a(n-4) +4*a(n-5) +6*a(n-6) -a(n-7) +a(n-8) -6*a(n-9) -4*a(n-10) -6*a(n-11) +9*a(n-12) +2*a(n-13) -3*a(n-14) +2*a(n-15) +5*a(n-16) +7*a(n-17) -6*a(n-18) +a(n-19) -3*a(n-20) +2*a(n-21) +a(n-22) +3*a(n-23) -a(n-24) -4*a(n-25) +a(n-26) -2*a(n-27) +a(n-28) -a(n-29) +a(n-30) -a(n-31) -a(n-32) -a(n-36)

%e Some solutions for n=5

%e ..4....2....0....0....3....1....1....0....0....2....3....2....2....1....2....2

%e ..4....5....0....1....5....3....1....1....1....5....3....5....2....2....5....2

%e ..2....3....4....5....4....4....3....3....3....2....5....2....5....3....1....4

%e ..0....5....4....4....3....2....5....5....4....5....2....5....4....5....3....4

%e ..4....5....5....5....1....1....2....2....3....3....2....5....4....3....5....2

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 15 2012