login
Number of (n+1) X 7 0..2 arrays with every 2 X 3 or 3 X 2 subblock having exactly one clockwise edge increases.
1

%I #7 Apr 21 2021 14:49:53

%S 13386,4722,3408,4836,7584,11712,19200,30528,48096,78744,125184,

%T 196320,316128,500832,785280,1264512,2003328,3141120,5058048,8013312,

%U 12564480,20232192,32053248,50257920,80928768,128212992,201031680,323715072

%N Number of (n+1) X 7 0..2 arrays with every 2 X 3 or 3 X 2 subblock having exactly one clockwise edge increases.

%C Column 6 of A207050.

%H R. H. Hardin, <a href="/A207048/b207048.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-3) n > 14.

%e Some solutions for n=4

%e ..1..2..2..1..1..1..2....0..2..1..1..2..2..2....1..0..2..2..0..0..0

%e ..1..2..2..2..1..1..1....0..0..1..1..1..2..2....1..1..2..2..2..0..0

%e ..1..1..2..2..2..1..1....0..0..0..1..1..1..2....1..1..1..2..2..2..0

%e ..1..1..1..2..2..2..0....1..0..0..0..1..1..1....2..1..1..1..2..2..2

%e ..0..1..1..1..2..2..2....1..1..0..0..0..1..1....2..0..1..1..1..2..2

%Y Cf. A207050.

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 14 2012