%I #11 Jun 17 2018 14:40:18
%S 81,150,441,1416,4371,13386,41589,128700,397335,1229310,3802377,
%T 11755344,36352875,112421490,347633853,1075001508,3324303039,
%U 10279835430,31788718257,98301693240,303982182099,940016132634,2906850556773
%N Number of (n+1) X 2 0..2 arrays with every 2 X 3 or 3 X 2 subblock having exactly one clockwise edge increases.
%C Column 1 of A207050.
%H R. H. Hardin, <a href="/A207043/b207043.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) + a(n-2) + 8*a(n-3) - 2*a(n-4) for n>5.
%F Empirical g.f.: 3*x*(27 - 4*x + 20*x^2 - 88*x^3 + 20*x^4) / (1 - 2*x - x^2 - 8*x^3 + 2*x^4). - _Colin Barker_, Jun 17 2018
%e Some solutions for n=4:
%e 2 0 1 1 0 2 2 1 2 1 0 0 1 0 0 2 2 1 2 1
%e 2 2 1 0 0 1 1 1 1 1 2 0 0 0 0 0 2 0 0 0
%e 2 2 2 2 0 1 1 1 1 1 2 2 0 0 0 0 0 0 0 0
%e 2 0 2 2 0 0 0 1 0 0 2 2 0 2 1 2 0 0 0 1
%e 0 0 2 0 0 0 0 0 0 0 0 2 0 0 2 2 2 2 0 0
%Y Cf. A207050.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 14 2012