login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers Phi_k(m) with integer k > 2, |m| > 1 but k != 2^j (j > 1).
1

%I #31 May 10 2021 02:08:31

%S 3,7,11,13,21,31,43,57,61,73,91,111,121,127,133,151,157,183,205,211,

%T 241,273,307,331,341,343,381,421,463,507,521,547,553,601,651,683,703,

%U 757,781,813,871,931,993,1057,1093,1111,1123,1191,1261,1333,1407,1483

%N Numbers Phi_k(m) with integer k > 2, |m| > 1 but k != 2^j (j > 1).

%C Phi_k(m) denotes the cyclotomic polynomial numbers Cyclotomic(k,m).

%C There is a property for Cyclotomic(k,m):

%C Cyclotomic(k^(j+1),m) = Cyclotomic(k,m^(k^j)).

%C So actually when k=2^(j+1), j is a positive integer,

%C Cyclotomic(k,m) = Cyclotomic(2,m^(2^j)) = 1+m^(2^j).

%C If these cases are excluded from A206942, this sequence is obtained.

%C This sequence is a subsequence of A206942.

%C Sequence A059054 is a subsequence of this sequence.

%C The Mathematica program can generate this sequence to arbitrary boundary maxdata without a user's choice of parameters. The parameter determination part of this program is explained at A206864.

%e a(1) = 3 = Phi(6,2).

%e 5 = Phi(4,2) = Phi(2,4) so excluded.

%e a(2) = 7 = Phi(3,2).

%t phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 1500; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], ((EulerPhi[#] <= eb) && ((! IntegerQ[Log[2, #]]) || (# <= 2))) &]; ap = SortBy[t, Cyclotomic[#, 2] &]; an = SortBy[t, Cyclotomic[#, -2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata,

%t a = Append[a, cc]]; i = 2; While[i++; cc = Cyclotomic[an[[i]], -m]; cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a]

%Y Cf. A206942, A194712, A059054, A206864.

%K nonn

%O 1,1

%A _Lei Zhou_, Feb 13 2012