login
A206942
Numbers of the form Phi_k(m) with k > 2 and |m| > 1.
5
3, 5, 7, 10, 11, 13, 17, 21, 26, 31, 37, 43, 50, 57, 61, 65, 73, 82, 91, 101, 111, 121, 122, 127, 133, 145, 151, 157, 170, 183, 197, 205, 211, 226, 241, 257, 273, 290, 307, 325, 331, 341, 343, 362, 381, 401, 421, 442, 463, 485, 507, 521, 530, 547, 553
OFFSET
1,1
COMMENTS
Phi_k(m) denotes the k-th cyclotomic polynomial evaluated at m.
We can see that for any integer b, b = Phi_2(b-1). However, if we make k>2 and |m|>1, Phi(k,m) are always positive integers that do not traverse the positive integer set.
The Mathematica program can generate this sequence to arbitrary upper bound maxdata without user's chosen of parameters. The parameter determination part of this program is explained in A206864.
LINKS
Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
EXAMPLE
a(1) = 3 = Phi_6(2) = Cyclotomic(6,2).
a(2) = 5 = Phi_4(2) = Cyclotomic(4,2).
...
a(15) = 61 = Phi_5(-3) = Cyclotomic(5,-3).
MATHEMATICA
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl == {}, Return[If[n == 1, {1}, {}]]]; val = {}; p = Last[pl]; For[e = 0; pe = 1, e == 0 || Mod[n, (p - 1) pe/p] == 0, e++; pe *= p, val = Join[val, pe*phiinv[If[e == 0, n, n*p/pe/(p - 1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1 + Divisors[n], PrimeQ]]; maxdata = 560; max = Ceiling[(1 + Sqrt[1 + 4*(maxdata - 1)])/4]*2; eb = 2*Floor[(Log[2, maxdata])/2 + 0.5]; While[eg = phiinv[eb]; lu = Length[eg]; lu == 0, eb = eb + 2]; t = Select[Range[eg[[Length[eg]]]], EulerPhi[#] <= eb &]; ap = SortBy[t, Cyclotomic[#, 2] &]; an = SortBy[t, Cyclotomic[#, -2] &]; a = {}; Do[i = 2; While[i++; cc = Cyclotomic[ap[[i]], m]; cc <= maxdata, a = Append[a, cc]]; i = 2; While[i++; cc = Cyclotomic[an[[i]], -m]; cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a]
(* Alternatively: *)
isA206942[n_] := If[n < 3, Return[False],
K = Floor[5.383 Log[n]^1.161]; M = Floor[2 Sqrt[n/3]];
For[k = 3, k <= K, k++, For[x = 2, x <= M, x++,
If[n == Cyclotomic[k, x], Return[True]]]];
Return[False]
]; Select[Range[555], isA206942] (* Peter Luschny, Feb 21 2018 *)
PROG
(Julia)
using Nemo
function isA206942(n)
if n < 3 return false end
R, x = PolynomialRing(ZZ, "x")
K = Int(floor(5.383*log(n)^1.161)) # Bounds from
M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt
for k in 3:K
c = cyclotomic(k, x)
for m in 2:M
n == subst(c, m) && return true
end
end
return false
end
L = [n for n in 1:553 if isA206942(n)]; print(L) # Peter Luschny, Feb 21 2018
CROSSREFS
Cf. A006511 for phiinv function in the Mathematica program.
Sequence in context: A189516 A138968 A299498 * A189171 A189220 A189009
KEYWORD
nonn
AUTHOR
Lei Zhou, Feb 13 2012
STATUS
approved