login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206777
G.f.: 1 + Sum_{n>=1} x^n * exp( Sum_{k>=1} binomial(2*n*k-1, n*k) * x^(n*k)/k ).
1
1, 1, 2, 3, 9, 15, 75, 133, 676, 1712, 7295, 16797, 100889, 208013, 1083061, 3186268, 14634359, 35357671, 209715154, 477638701, 2679305455, 7638371497, 35224117709, 91482563641, 568102780247, 1311836293464, 6979729709485, 21256008509080, 103440124113965
OFFSET
0,3
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n * Product_{k=0..n-1} C(u(n)^k*x), where u(n) = exp(2*Pi*I/n) is an n-th root of unity, and C(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 9*x^4 + 15*x^5 + 75*x^6 + 133*x^7 +...
Let C(x) = (1-sqrt(1-4*x))/(2*x), then the g.f. A(x) equals the series:
A(x) = 1 + x*C(x) + x^2*C(x)*C(-x) + x^3*C(x)*C(u(3)*x)*C(u(3)^2*x) + x^4*C(x)*C(I*x)*C(-x)*C(-I*x) + x^5*C(x)*C(u(5)*x)*C(u(5)^2*x)*C(u(5)^3*x)*C(u(5)^4*x) +...
where u(n) = exp(2*Pi*I/n).
The expansions of P(n) = Product_{k=0..n-1} C(u(n)^k*x) begin:
P(1) = C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
P(2) = C(x)*C(-x) = 1 + 3*x^2 + 22*x^4 + 211*x^6 + 2306*x^8 +...
P(3) = 1 + 10*x^3 + 281*x^6 + 10580*x^9 + 457700*x^12 + 21475122*x^15 +...
P(4) = 1 + 35*x^4 + 3830*x^8 + 570451*x^12 + 98118690*x^16 +...
P(5) = 1 + 126*x^5 + 54127*x^10 + 32006130*x^15 + 21932146139*x^20 +...
P(6) = 1 + 462*x^6 + 782761*x^12 + 1841287756*x^18 +...
P(7) = 1 + 1716*x^7 + 11501478*x^14 + 107761838756*x^21 +...
P(8) = 1 + 6435*x^8 + 170974710*x^16 + 6386000085075*x^24 +...
such that A(x) = 1 + x*C(x) + x^2*P(2) + x^3*P(3) + x^4*P(4) +...
PROG
(PARI) {a(n)=polcoeff(1+sum(m=1, n, x^m*exp(sum(k=1, n\m, binomial(2*m*k-1, m*k)*x^(m*k)/k)+x*O(x^n))), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=local(CATALAN=(1-sqrt(1-4*x+x^2*O(x^n)))/(2*x)); A=1+sum(m=1, n+1, x^m*CATALAN*round(prod(k=1, m-1, subst(CATALAN, x, exp(2*Pi*I*k/m)*x+x*O(x^n))))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A054416 A291868 A092638 * A173809 A298355 A023147
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 12 2012
STATUS
approved