Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 May 03 2016 23:15:28
%S 0,1,1,1,1,1,1,5,1,1,1,11,1,1,1,13,1,16,1,15,1,1,1,31,1,1,10,19,1,32,
%T 1,29,1,1,1,50,1,1,1,43,1,42,1,27,25,1,1,71,1,36,1,31,1,61,1,55,1,1,1,
%U 98,1,1,31,61,1,62,1,39,1,60,1,118,1,1,41,43,1
%N Sum of nonprime proper divisors (or nonprime aliquot parts) of n.
%C Sum of nonprime divisors of n that are less than n.
%C a(n) = 1 if n is prime or semiprime.
%C Up to 3*10^12, a(n) = n only for n = 42, 1316, and 131080256. In general, if p = 2^k-1 and q = 4^k-2*2^k-1 are two primes, then n = 2^(k-1)*p*q satisfies a(n) = n. This happens for k= 2, 3, 7, and 19, which give the aforementioned values and 3777871569031248714137. This property makes these values terms of A225028. - _Giovanni Resta_, May 03 2016
%H Michel Lagneau, <a href="/A206773/b206773.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A001065(n) - A105221(n)
%p with(numtheory):for n from 1 to 100 do:x:=factorset(n):n1:=nops(x):s:=sum('x[i] ', 'i'=1..n1): s1:=sigma(n)-s-n: if type(n,prime)=true then printf(`%d, `,1) else printf(`%d, `,s1):fi:od:
%t Table[Plus@@Select[Divisors[n],#<n&&(!PrimeQ[#])&],{n,1,90}]
%t a[1]=0; a[n_]:= DivisorSigma[1,n] - n - Plus @@ First /@ FactorInteger @ n; Array[a, 100] (* _Giovanni Resta_, May 03 2016 *)
%Y Cf. A001065, A105221, A023890, A187793, A001358, A000469, A225028.
%K nonn
%O 1,8
%A _Michel Lagneau_, Jan 10 2013