Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 25 2024 04:50:25
%S 1,23,226,3039,33306,594902,10012010,220553599,5170061143,
%T 138942811678,4049569009674,130045043225838,4503599691290714,
%U 168477832912220134,6746676272050878036,288487396687082933759,13107200000016921588858,630907565930072760920429
%N a(n) = Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 3^(n-k).
%C Here sigma(n,k) equals the sum of the k-th powers of the divisors of n.
%H Vaclav Kotesovec, <a href="/A206766/b206766.txt">Table of n, a(n) for n = 1..380</a>
%F a(n) = Sum_{d|n} ((d+3)^n - 3^n).
%F Logarithmic derivative of A206765.
%F L.g.f.: Sum_{n>=1} (1/n) * log( (1 - 3^n*x^n) / (1 - (n+3)^n*x^n) ).
%F a(n) ~ exp(3) * n^n. - _Vaclav Kotesovec_, Oct 04 2020
%e L.g.f.: L(x) = x + 23*x^2/2 + 226*x^3/3 + 3039*x^4/4 + 33306*x^5/5 +...
%e Exponentiation yields the g.f. of A206765:
%e exp(L(x)) = 1 + x + 12*x^2 + 87*x^3 + 907*x^4 + 8393*x^5 + 118932*x^6 +...
%e Illustration of terms.
%e a(2) = 2*sigma(2,1)*3 + 1*sigma(2,2)*1 = 2*3*3 + 1*5*1 = 23;
%e a(3) = 3*sigma(3,1)*9 + 3*sigma(3,2)*3 + 1*sigma(3,3)*1 = 3*4*9 + 3*10*3 + 1*28*1 = 226;
%e a(4) = 4*sigma(4,1)*27 + 6*sigma(4,2)*9 + 4*sigma(4,3)*3 + 1*sigma(4,4)*1 = 4*7*27 + 6*21*9 + 4*73*3 + 1*273*1 = 3039.
%o (PARI) {a(n)=sum(k=1, n, binomial(n, k)*sigma(n, k)*3^(n-k))}
%o (PARI) {a(n)=n*polcoeff(sum(k=1, n, (1/k)*log((1-3^k*x^k)/(1-(k+3)^k*x^k +x*O(x^n)))), n)}
%o for(n=1,21,print1(a(n),", "))
%Y Cf. A206765 (exp), A205815, A205812.
%K nonn,easy
%O 1,2
%A _Paul D. Hanna_, Feb 12 2012