%I #7 Mar 30 2012 18:36:00
%S 0,0,1,7,5,3,9,7,13,112,30,23,83,63,38,36,122,102,33,137,161,79,103,
%T 145,112,180,129,246,102,131,186,135,128,245,119,112,273,240,127,244,
%U 299,191,290,363,188,199,272,203,276,225,205,273,253,308,363,361,473
%N Number of halving and tripling steps to reach 1 in 3x+1 problem applied the Fibonacci numbers.
%H Michel Lagneau, <a href="/A206643/b206643.txt">Table of n, a(n) for n = 1..2000</a>
%e a(4) = 7 because Fibonacci(4) = 3, and A006577(3) = 7.
%t f[n_] := Module[{a=Fibonacci[n], k=0}, While[a!=1, k++; If[EvenQ[a], a=a/2, a=a*3+1]]; k]; Table[f[n], {n, 100}]
%Y Cf. A006577, A000045.
%K nonn
%O 1,4
%A _Michel Lagneau_, Feb 11 2012