login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = Number of (n+1) X (k+1) 0..2 arrays with every 2 X 3 or 3 X 2 subblock having no more than four equal edges, and new values 0..2 introduced in row major order.
9

%I #9 May 22 2014 03:34:36

%S 14,121,121,1085,3232,1085,9729,86392,86392,9729,87238,2309200,

%T 6885875,2309200,87238,782246,61723264,548812835,548812835,61723264,

%U 782246,7014246,1649819344,43740991174,130424683977,43740991174,1649819344

%N T(n,k) = Number of (n+1) X (k+1) 0..2 arrays with every 2 X 3 or 3 X 2 subblock having no more than four equal edges, and new values 0..2 introduced in row major order.

%C Table starts:

%C .......14...........121..............1085..................9729

%C ......121..........3232.............86392...............2309200

%C .....1085.........86392...........6885875.............548812835

%C .....9729.......2309200.........548812835..........130424683977

%C ....87238......61723264.......43740991174........30995204476194

%C ...782246....1649819344.....3486207195767......7365962082764193

%C ..7014246...44098506880...277854703424333...1750509332449744133

%C .62895364.1178721971776.22145337882995800.416005797001053603530

%H R. H. Hardin, <a href="/A206635/b206635.txt">Table of n, a(n) for n = 1..179</a>

%e Some solutions for n=4, k=3:

%e ..0..0..0..0....0..0..1..1....0..1..0..1....0..1..0..0....0..1..0..2

%e ..1..0..0..1....1..1..1..0....2..2..1..0....1..1..1..0....1..2..2..1

%e ..2..1..0..0....1..2..1..2....1..1..0..0....2..1..2..2....1..0..1..1

%e ..2..0..0..0....0..1..2..1....2..0..0..0....2..0..2..1....0..0..2..0

%e ..2..0..0..1....2..0..0..1....0..1..1..0....1..1..1..0....0..2..0..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 10 2012