Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Jan 19 2023 09:35:21
%S 2,5,11,14,36,57,141,221,346,677,4042,9870,114916,179557,1070250,
%T 2612917,9967491,12459364,19467757,30418371,38022964,59410882,
%U 116036880,283293166,553306966,864542135,1080677669,3297966522,8051676081,15725929847,19657412309,47991729272
%N a(n) is the number of white and black stones lying in a circle; starting with place 1, the first a(n) steps of length 5 give the places of white stones. Beginning with last place, the next a(n) steps give the places of black stones.
%C The game eliminates a(n) - 1 white and a(n) black stones; the a(n)-th white stone survives. The game is known under different names; e.g., "Sankt Peters Spiel" or "Ludus Sancti Petri" or "Josephus problem".
%C It gives sequences for every step length s from 2.
%C s=2: 2^n - 1;
%C s=3: 3, 5, 8, 30, 69, 104, 354, 798, 1797, 2696, 9102, 20481.
%C s=5: this sequence.
%C Apparently, this is Seki Takakazu's sequence of "limitative numbers" with m = 5. - _Petros Hadjicostas_, Jul 18 2020
%H R. Baumann, <a href="https://www.yumpu.com/de/document/read/460296/nr-165">Computer Knobelei</a>, LOG IN, Heft Nr. 165, pp. 68-71, 2010 (in German).
%H Saburô Uchiyama, <a href="https://doi.org/10.21099/tkbjm/1496164652">On the generalized Josephus problem</a>, Tsukuba J. Math. 27(2) (2003), 319-339; see p. 337. [Has about 50 sequences related to Seki Takakazu's "limitative numbers"]
%H Saburô Uchiyama, <a href="https://www.jstor.org/stable/43686318">On the generalized Josephus problem</a>, Tsukuba J. Math. 27(2) (2003), 319-339 [jstor stable version]; see p. 337.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Seki_Takakazu">Seki Takakazu</a>.
%H <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a>
%e The solution for a(3) = 11: (WBWBWBWBWWBBBWWWBBBWBW);
%e White stones: (5, 10, 15, 20, 3, 9, 16, 22, 7, 14, 1);
%e Black stones: (8, 18, 4, 17, 6, 21, 13, 12, 20, 2, 11).
%p s:=5: s1:=s-1: a:=1:
%p for p from 2 to 100000 by 2 do
%p b:=(a+s1) mod p +1:
%p if (b=1) then printf("%9d",p-1): end if:
%p a:=(b+s1) mod (p+1) +1:
%p if (a=1) then printf("%9d",p): end if:
%p end do:
%K nonn
%O 1,1
%A _Paul Weisenhorn_, Feb 10 2012