login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fibonacci sequence beginning 12, 7.
1

%I #23 Sep 08 2022 08:46:01

%S 12,7,19,26,45,71,116,187,303,490,793,1283,2076,3359,5435,8794,14229,

%T 23023,37252,60275,97527,157802,255329,413131,668460,1081591,1750051,

%U 2831642,4581693,7413335,11995028,19408363,31403391,50811754,82215145,133026899,215242044

%N Fibonacci sequence beginning 12, 7.

%H Vincenzo Librandi, <a href="/A206423/b206423.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1).

%F From _Andrew Howroyd_, Aug 28 2018: (Start)

%F a(n) = a(n-1) + a(n-2) for n > 2.

%F a(n) = 12*Fibonacci(n) - 5*Fibonacci(n-1).

%F G.f.: x*(12 - 5*x)/(1 - x - x^2).

%F (End)

%t LinearRecurrence[{1,1},{12,7},60]

%o (Magma) I:=[12, 7]; [n le 2 select I[n] else Self(n-1)+Self(n-2): n in [1..40]]; \\ _Vincenzo Librandi_, Feb 17 2012

%o (PARI) Vec((12 - 5*x)/(1 - x - x^2) + O(x^30)) \\ _Andrew Howroyd_, Aug 28 2018

%o (Python)

%o alst, terms = [12, 7], 37

%o [alst.append(alst[n-1] + alst[n-2]) for n in range(2, terms)]

%o print(alst) # _Michael S. Branicky_, Dec 07 2021

%Y Cf. A000045.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Feb 07 2012