login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206420
Fibonacci sequence beginning 11, 8.
4
11, 8, 19, 27, 46, 73, 119, 192, 311, 503, 814, 1317, 2131, 3448, 5579, 9027, 14606, 23633, 38239, 61872, 100111, 161983, 262094, 424077, 686171, 1110248, 1796419, 2906667, 4703086, 7609753, 12312839, 19922592, 32235431, 52158023, 84393454, 136551477
OFFSET
1,1
FORMULA
From Andrew Howroyd, Aug 28 2018: (Start)
a(n) = a(n-1) + a(n-2) for n > 2.
a(n) = 11*Fibonacci(n) - 3*Fibonacci(n-1).
G.f.: x*(11 - 3*x)/(1 - x - x^2). (End)
MATHEMATICA
LinearRecurrence[{1, 1}, {11, 8}, 60]
PROG
(Magma) I:=[11, 8]; [n le 2 select I[n] else Self(n-1)+ Self(n-2): n in [1..40]]; \\ Vincenzo Librandi, Feb 18 2012
(PARI) Vec((11 - 3*x)/(1 - x - x^2) + O(x^30)) \\ Andrew Howroyd, Aug 28 2018
(Python)
def aupton(terms):
alst = [11, 8]
for n in range(3, terms+1):
alst.append(alst[-1] + alst[-2])
return alst[:terms]
print(aupton(36)) # Michael S. Branicky, Nov 08 2021
CROSSREFS
Cf. A000045.
Sequence in context: A306494 A068974 A244447 * A304699 A377042 A133236
KEYWORD
nonn,easy
AUTHOR
STATUS
approved