|
|
A206420
|
|
Fibonacci sequence beginning 11, 8.
|
|
4
|
|
|
11, 8, 19, 27, 46, 73, 119, 192, 311, 503, 814, 1317, 2131, 3448, 5579, 9027, 14606, 23633, 38239, 61872, 100111, 161983, 262094, 424077, 686171, 1110248, 1796419, 2906667, 4703086, 7609753, 12312839, 19922592, 32235431, 52158023, 84393454, 136551477
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1).
|
|
FORMULA
|
From Andrew Howroyd, Aug 28 2018: (Start)
a(n) = a(n-1) + a(n-2) for n > 2.
a(n) = 11*Fibonacci(n) - 3*Fibonacci(n-1).
G.f.: x*(11 - 3*x)/(1 - x - x^2).
(End)
|
|
MATHEMATICA
|
LinearRecurrence[{1, 1}, {11, 8}, 60]
|
|
PROG
|
(MAGMA) I:=[11, 8]; [n le 2 select I[n] else Self(n-1)+ Self(n-2): n in [1..40]]; \\ Vincenzo Librandi, Feb 18 2012
(PARI) Vec((11 - 3*x)/(1 - x - x^2) + O(x^30)) \\ Andrew Howroyd, Aug 28 2018
(Python)
def aupton(terms):
alst = [11, 8]
for n in range(3, terms+1):
alst.append(alst[-1] + alst[-2])
return alst[:terms]
print(aupton(36)) # Michael S. Branicky, Nov 08 2021
|
|
CROSSREFS
|
Cf. A000045.
Sequence in context: A306494 A068974 A244447 * A304699 A133236 A038322
Adjacent sequences: A206417 A206418 A206419 * A206421 A206422 A206423
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vladimir Joseph Stephan Orlovsky, Feb 07 2012
|
|
STATUS
|
approved
|
|
|
|