Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 16 2018 16:10:33
%S 81,423,2457,15087,94761,600519,3818649,24314127,154889673,986887623,
%T 6288452889,40071132591,255342940521,1627113214023,10368413881497,
%U 66070427765967,421019298884361,2682853284675399,17095895564336409
%N Number of (n+1) X 2 0..2 arrays with every 2 X 3 or 3 X 2 subblock having an equal number of clockwise and counterclockwise edge increases.
%C Column 1 of A206414.
%H R. H. Hardin, <a href="/A206407/b206407.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 9*a(n-1) - 17*a(n-2) + a(n-3) + 4*a(n-4).
%F Empirical g.f.: 3*x*(27 - 102*x + 9*x^2 + 28*x^3) / ((1 - 2*x - x^2)*(1 - 7*x + 4*x^2)). - _Colin Barker_, Jun 16 2018
%e Some solutions for n=4:
%e 1 2 1 2 1 2 0 1 2 0 1 2 1 2 2 1 2 2 1 2
%e 0 0 1 1 0 1 2 0 2 2 1 2 0 2 0 2 0 0 0 1
%e 1 2 1 1 2 0 2 2 2 0 1 2 0 1 1 0 2 2 2 0
%e 0 2 1 0 2 0 0 2 2 2 1 1 0 2 2 1 0 2 2 2
%e 0 1 1 0 0 1 2 0 0 2 2 1 1 2 1 0 2 0 0 0
%Y Cf. A206414.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 07 2012