login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206380
Number of (n+1)X6 0..3 arrays with every 2X2 subblock having the same number of equal diagonal or antidiagonal elements, and new values 0..3 introduced in row major order
1
44585, 10690969, 2808967145, 748963157161, 200108001096137, 53482634218458697, 14294968502144130953, 3820826066766517546921, 1021249666781298003730505, 272964826866462882832853641
OFFSET
1,1
COMMENTS
Column 5 of A206383
LINKS
FORMULA
Empirical: a(n) = 394*a(n-1) -38562*a(n-2) +1246392*a(n-3) +6334675*a(n-4) -1215511426*a(n-5) +25096715040*a(n-6) -111433495776*a(n-7) -2633554263696*a(n-8) +38447016473440*a(n-9) -124529929487104*a(n-10) -973109346072576*a(n-11) +8528195948079360*a(n-12) -13461810857735680*a(n-13) -67310021223342080*a(n-14) +238037998037753856*a(n-15) +44544280591749120*a(n-16) -947327372288188416*a(n-17) +643157082054918144*a(n-18) +987246769084563456*a(n-19) -892353207989698560*a(n-20)
EXAMPLE
Some solutions for n=4
..0..0..0..0..1..2....0..0..0..0..0..0....0..0..0..0..1..1....0..1..2..1..1..0
..3..3..1..3..3..0....0..0..0..0..0..0....0..2..0..1..1..0....0..1..0..3..2..2
..1..2..0..2..1..2....0..0..0..0..0..0....2..2..2..0..1..1....2..1..0..3..0..1
..1..2..1..2..1..3....0..0..0..0..0..0....0..2..0..0..0..1....0..1..0..3..2..2
..3..2..3..0..0..2....0..0..0..0..0..0....2..1..2..0..1..1....2..1..2..3..0..1
CROSSREFS
Sequence in context: A254994 A295480 A206166 * A204786 A248066 A252147
KEYWORD
nonn
AUTHOR
R. H. Hardin Feb 07 2012
STATUS
approved