%I #5 Mar 31 2012 12:37:11
%S 83088,4796092,376249940,30018231756,2402295361876,192331317667804,
%T 15397943280509136,1232679968976699692,98678331556478176912,
%U 7899225044352464695308,632328349869410090441096
%N Number of (n+1)X5 0..3 arrays with every 2X3 or 3X2 subblock having exactly three clockwise edge increases
%C Column 4 of A206327
%H R. H. Hardin, <a href="/A206323/b206323.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 183*a(n-1) -12451*a(n-2) +431242*a(n-3) -8886139*a(n-4) +120866145*a(n-5) -1179014244*a(n-6) +8768675808*a(n-7) -51454745441*a(n-8) +240262258906*a(n-9) -885520958374*a(n-10) +2530542681588*a(n-11) -5428375302886*a(n-12) +8084083929724*a(n-13) -5930392323084*a(n-14) -7634354517794*a(n-15) +38890465996140*a(n-16) -95268108590731*a(n-17) +186624188350509*a(n-18) -301961470324629*a(n-19) +353763294618256*a(n-20) -167129467275573*a(n-21) -391779195765952*a(n-22) +1227500060831118*a(n-23) -1992750968159206*a(n-24) +2343202465599204*a(n-25) -2234194888988833*a(n-26) +1886349651989041*a(n-27) -1514677707006655*a(n-28) +1188167691894956*a(n-29) -881928373815179*a(n-30) +580988595478138*a(n-31) -317613769463907*a(n-32) +133650873588708*a(n-33) -37824298812889*a(n-34) +3800752301117*a(n-35) +2257980844041*a(n-36) -1251463484089*a(n-37) +259550198799*a(n-38) +3129578619*a(n-39) -14265223894*a(n-40) +2839493915*a(n-41) +9653750*a(n-42) -72347280*a(n-43) +5523888*a(n-44) +278636*a(n-45) -43200*a(n-46) for n>49
%e Some solutions for n=4
%e ..1..1..2..2..1....1..3..2..3..2....0..1..0..3..0....3..0..1..0..3
%e ..0..2..1..0..2....2..1..3..1..3....3..0..3..1..3....2..3..0..3..0
%e ..1..0..2..1..3....3..2..0..2..0....3..2..0..2..1....2..0..3..1..0
%e ..2..1..3..2..0....0..3..1..3..1....1..3..1..0..2....1..2..0..2..1
%e ..1..0..0..3..2....2..0..3..2..3....3..0..3..1..0....1..3..1..3..2
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 06 2012