login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X 3 0..2 arrays with no 2 X 2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases in its adjacent leftward or upward neighbors.
1

%I #7 Dec 11 2015 21:25:36

%S 306,972,3168,11205,35922,123357,408198,1376754,4572942,15438600,

%T 51367338,172747923,576448980,1935886518,6465571452,21695411226,

%U 72514916274,243164479179,813186470136,2725748659476,9118451550024

%N Number of (n+1) X 3 0..2 arrays with no 2 X 2 subblock having the number of clockwise edge increases equal to the number of counterclockwise edge increases in its adjacent leftward or upward neighbors.

%C Column 2 of A206277.

%H R. H. Hardin, <a href="/A206271/b206271.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-2) +28*a(n-4) +36*a(n-5) -18*a(n-6) +78*a(n-7) -490*a(n-8) +298*a(n-9) +86*a(n-10) -854*a(n-11) +1669*a(n-12) -524*a(n-13) -872*a(n-14) +648*a(n-15) +140*a(n-16) -302*a(n-17) +10*a(n-18) +76*a(n-19) +8*a(n-20) -16*a(n-21) +8*a(n-22) for n>24.

%e Some solutions for n=4:

%e ..2..0..2....1..2..0....0..1..1....0..2..2....2..1..0....0..0..0....1..2..1

%e ..1..1..0....1..0..1....2..1..1....0..1..2....2..2..1....1..2..0....0..1..1

%e ..1..1..0....2..1..1....0..2..2....0..0..1....2..2..2....1..2..1....0..0..2

%e ..1..2..1....2..1..1....0..2..2....0..0..1....0..2..2....0..0..2....2..1..0

%e ..0..1..1....0..2..1....1..0..2....2..1..2....2..0..2....0..0..1....1..0..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 05 2012