login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206267
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with the number of rightwards and downwards edge increases in each 2X2 subblock equal to the number in all its horizontal and vertical neighbors
9
16, 24, 24, 34, 28, 34, 50, 44, 44, 50, 72, 64, 78, 64, 72, 105, 93, 135, 135, 93, 105, 154, 128, 218, 260, 218, 128, 154, 229, 174, 339, 471, 471, 339, 174, 229, 345, 228, 503, 800, 932, 800, 503, 228, 345, 527, 295, 724, 1296, 1725, 1725, 1296, 724, 295, 527, 815, 372
OFFSET
1,1
COMMENTS
Table starts
..16..24..34...50...72...105...154...229...345....527....815...1274...2009
..24..28..44...64...93...128...174...228...295....372....464....568....689
..34..44..78..135..218...339...503...724..1009...1374...1828...2389...3068
..50..64.135..260..471...800..1296..2010..3012...4376...6197...8576..11637
..72..93.218..471..932..1725..3011..5014..8016..12385..18572..27141..38768
.105.128.339..800.1725..3440..6444.11448.19457..31832..50397..77528.116289
.154.174.503.1296.3011..6444.12878.24319.43766..75591.125978.203499.319778
.229.228.724.2010.5014.11448.24319.48628.92387.167968.293939.497428.817199
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5) for n>6
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5) for n>6
k=3: a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6) for n>7
k=4: a(n) = 5*a(n-1) -9*a(n-2) +5*a(n-3) +5*a(n-4) -9*a(n-5) +5*a(n-6) -a(n-7) for n>8
k=5: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8) for n>9
k=6: a(n) = 7*a(n-1) -20*a(n-2) +28*a(n-3) -14*a(n-4) -14*a(n-5) +28*a(n-6) -20*a(n-7) +7*a(n-8) -a(n-9) for n>10
k=7: a(n) = 8*a(n-1) -27*a(n-2) +48*a(n-3) -42*a(n-4) +42*a(n-6) -48*a(n-7) +27*a(n-8) -8*a(n-9) +a(n-10) for n>11
EXAMPLE
Some solutions for n=4 k=3
..1..0..0..0....0..0..0..0....1..1..0..0....0..0..1..0....1..0..1..0
..0..0..0..0....0..0..0..0....1..1..0..0....0..1..0..1....0..1..0..1
..0..0..0..0....0..0..0..0....0..0..0..0....1..0..1..0....1..0..1..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..1....0..1..0..1
..0..0..0..0....0..0..0..0....0..0..0..0....1..0..1..1....1..0..1..1
CROSSREFS
Sequence in context: A166675 A114405 A098351 * A325480 A205193 A052058
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 05 2012
STATUS
approved