%I #11 Jul 19 2020 02:17:10
%S 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,
%T 4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,
%U 7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8
%N Number of partitions of n into repunit powers, cf. A083278.
%C a(n) = A206244(n) for n <= 120, a(n) > A206244(n) for n > 120.
%H Reinhard Zumkeller, <a href="/A206245/b206245.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Repunit">Repunit</a>
%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%o (Haskell)
%o a206245 = p a083278_list where
%o p _ 0 = 1
%o p rps'@(rp:rps) n = if n < rp then 0 else p rps' (n - rp) + p rps n
%Y Cf. A002275, A000041, A179051.
%K nonn
%O 0,12
%A _Reinhard Zumkeller_, Feb 05 2012