login
Number of partitions of n into repunit powers, cf. A083278.
4

%I #11 Jul 19 2020 02:17:10

%S 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,

%T 4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,7,

%U 7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8

%N Number of partitions of n into repunit powers, cf. A083278.

%C a(n) = A206244(n) for n <= 120, a(n) > A206244(n) for n > 120.

%H Reinhard Zumkeller, <a href="/A206245/b206245.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Repunit">Repunit</a>

%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>

%o (Haskell)

%o a206245 = p a083278_list where

%o p _ 0 = 1

%o p rps'@(rp:rps) n = if n < rp then 0 else p rps' (n - rp) + p rps n

%Y Cf. A002275, A000041, A179051.

%K nonn

%O 0,12

%A _Reinhard Zumkeller_, Feb 05 2012