Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 25 2015 06:29:02
%S 1,1,4,19,108,674,4494,31275,225132,1662894,12541802,96225037,
%T 748935563,5900502806,46976736513,377425326138,3056671009814,
%U 24930725879856,204623068332997,1688980598900228,14012122025369431,116784468316023069,977437078888272796,8212186058546599006
%N Number of partitions of n^2+n into parts not greater than n.
%H Alois P. Heinz and Vaclav Kotesovec, <a href="/A206227/b206227.txt">Table of n, a(n) for n = 0..382</a> (first 150 terms from Alois P. Heinz)
%F a(n) = [x^(n^2+n)] Product_{k=1..n} 1/(1 - x^k).
%F a(n) ~ c * d^n / n^2, where d = 9.1533701924541224619485302924013545... = A258268, c = 0.3572966225745094270279188015952797... . - _Vaclav Kotesovec_, Sep 07 2014
%p T:= proc(n, k) option remember;
%p `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
%p end:
%p seq(T(n^2+n, n), n=0..20); # _Vaclav Kotesovec_, May 25 2015 after _Alois P. Heinz_
%t Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)}],{n,0,20}] (* _Vaclav Kotesovec_, May 25 2015 *)
%o (PARI) {a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n^2+n)))),n^2+n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A173519, A206226, A206240, A107379, A258268.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Feb 05 2012