login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+1) X 2 0..3 arrays with every 2 X 3 or 3 X 2 subblock having exactly one clockwise edge increases.
1

%I #10 Jun 14 2018 08:18:31

%S 256,480,1768,7388,29724,117084,468968,1878808,7493008,29925508,

%T 119605588,477741796,1908251600,7623408272,30453658424,121651754668,

%U 485967430220,1941313945708,7755000190904,30979095429960,123753089725152

%N Number of (n+1) X 2 0..3 arrays with every 2 X 3 or 3 X 2 subblock having exactly one clockwise edge increases.

%C Column 1 of A206206.

%H R. H. Hardin, <a href="/A206199/b206199.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) + 17*a(n-3) - 5*a(n-4) + 2*a(n-5) for n>6.

%F Empirical g.f.: 4*x*(64 - 72*x + 82*x^2 - 567*x^3 + 170*x^4 - 64*x^5) / (1 - 3*x - 17*x^3 + 5*x^4 - 2*x^5). - _Colin Barker_, Jun 14 2018

%e Some solutions for n=4:

%e 1 3 1 2 2 0 1 1 0 2 1 3 1 0 3 3 1 0 2 2

%e 1 1 1 2 2 2 1 3 0 0 2 2 0 0 1 1 0 0 1 1

%e 1 1 1 2 2 2 3 3 0 0 2 2 0 0 1 1 0 0 1 1

%e 3 0 1 1 0 0 3 3 1 0 2 0 0 2 2 3 1 2 2 0

%e 3 3 1 1 0 0 2 2 1 0 2 3 1 1 2 2 1 1 3 3

%Y Cf. A206206.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 04 2012