|
|
A206133
|
|
Number of (n+1) X 5 0..3 arrays with every 2 X 3 or 3 X 2 subblock having exactly three counterclockwise and three clockwise edge increases.
|
|
1
|
|
|
19660, 1269044, 83120732, 5465582068, 359793857820, 23692759265020, 1560344155530612, 102763262525972772, 6767981316129837148, 445739932002608156380, 29356499455959182741892, 1933423944068169976159444
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 4 of A206137.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 116*a(n-1) -4272*a(n-2) +73274*a(n-3) -664822*a(n-4) +3045011*a(n-5) -2689641*a(n-6) -43109752*a(n-7) +221878512*a(n-8) -361728247*a(n-9) -568084610*a(n-10) +3622619867*a(n-11) -6420944192*a(n-12) +2898716070*a(n-13) +7936254065*a(n-14) -16657448946*a(n-15) +14988867773*a(n-16) -6947278317*a(n-17) +1069497024*a(n-18) +493980717*a(n-19) -278060954*a(n-20) +43850387*a(n-21) +2768722*a(n-22) -1728440*a(n-23) +198864*a(n-24) -8316*a(n-25) +108*a(n-26).
|
|
EXAMPLE
|
Some solutions for n=4:
..1..2..3..1..2....1..0..1..2..1....3..2..0..1..2....1..0..1..0..1
..2..3..1..2..0....0..1..0..1..2....2..0..1..3..0....2..1..2..1..0
..1..2..3..0..2....1..2..1..2..3....3..1..2..0..1....1..2..0..2..1
..0..1..2..3..0....3..0..3..0..2....0..2..3..2..3....0..1..2..3..2
..3..0..1..2..3....0..1..0..3..0....1..0..2..3..0....2..0..1..2..0
|
|
CROSSREFS
|
Sequence in context: A065304 A178782 A234782 * A321825 A186559 A186568
Adjacent sequences: A206130 A206131 A206132 * A206134 A206135 A206136
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Feb 04 2012
|
|
STATUS
|
approved
|
|
|
|