Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Dec 11 2015 11:56:52
%S 256,2292,2292,15564,33688,15564,95408,359932,359932,95408,574364,
%T 3991540,8114696,3991540,574364,3472540,48804116,210981300,210981300,
%U 48804116,3472540,21122008,628383700,5942161220,12793359564,5942161220
%N T(n,k) = number of (n+1) X (k+1) 0..3 arrays with the number of clockwise edge increases in 2 X 2 subblocks nondecreasing, and counterclockwise edge increases nonincreasing, rightwards and downwards.
%C Table starts
%C .......256.........2292...........15564..............95408
%C ......2292........33688..........359932............3991540
%C .....15564.......359932.........8114696..........210981300
%C .....95408......3991540.......210981300........12793359564
%C ....574364.....48804116......5942161220.......816173366244
%C ...3472540....628383700....173412646632.....53034080059688
%C ..21122008...8315311380...5144980591044...3471628061187072
%C .129099360.111777355164.153835526412512.227967307330878004
%H R. H. Hardin, <a href="/A206109/b206109.txt">Table of n, a(n) for n = 1..112</a>
%e Some solutions for n=4, k=3:
%e ..3..1..1..2....1..1..1..0....1..1..0..3....1..1..1..0....0..1..2..0
%e ..0..0..0..0....3..3..1..0....2..3..2..0....3..3..1..0....0..1..1..1
%e ..1..3..3..1....2..3..1..0....1..2..0..1....2..3..1..0....0..0..0..2
%e ..1..2..2..2....2..3..1..0....3..0..1..3....2..3..1..1....3..3..3..3
%e ..1..2..0..3....2..3..1..0....0..2..3..0....2..3..3..2....0..3..1..0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 03 2012