%I #18 Aug 08 2019 16:00:14
%S 2,8,6,5,1,4,9,6,6,4,9,7,6,4,7,3,4,2,7,4,8,8,5,5,5,4,2,2,7,0,3,7,0,9,
%T 6,4,1,2,5,1,1,0,9,6,0,6,2,5,2,8,6,9,5,6,5,1,8,7,1,0,2,3,2,3,9,5,1,5,
%U 5,5,3,8,7,1,0,2,6,2,8,6,1,5,1,4,1,2,1
%N Decimal expansion of the constant that satisfies gamma(x) = sqrt(Pi) and x > 1/2.
%C Note that gamma(1/2) = sqrt(Pi).
%H G. C. Greubel, <a href="/A206099/b206099.txt">Table of n, a(n) for n = 1..5000</a>
%e c = 2.8651496649764734274885554227037096412511096062528695651871... such that gamma(c) = gamma(1/2) = sqrt(Pi) = 1.772453850905516027298...
%t RealDigits[x/.FindRoot[Gamma[x]==Sqrt[Pi],{x,3},WorkingPrecision-> 120]] [[1]] (* _Harvey P. Dale_, Aug 08 2019 *)
%o (PARI) {a(n)=local(c=solve(x=0.51,2.9,gamma(x)-sqrt(Pi))); floor(10^n*c)%10}
%o for(n=0,120,print1(a(n),", "))
%Y Cf. A002161.
%K nonn,cons
%O 1,1
%A _Paul D. Hanna_, Feb 03 2012