login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206085 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the number of clockwise edge increases in every 2X2 subblock equal to one 9

%I

%S 124,960,960,7308,13672,7308,55864,187144,187144,55864,426596,2567488,

%T 4379116,2567488,426596,3258496,35195768,101839532,101839532,35195768,

%U 3258496,24887884,482548752,2359157212,3974151636,2359157212,482548752

%N T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with the number of clockwise edge increases in every 2X2 subblock equal to one

%C Table starts

%C .......124.........960...........7308............55864..............426596

%C .......960.......13672.........187144..........2567488............35195768

%C ......7308......187144........4379116........101839532..........2359157212

%C .....55864.....2567488......101839532.......3974151636........153755370824

%C ....426596....35195768.....2359157212.....153755370824.......9872088702792

%C ...3258496...482548752....54618168204....5940013254736.....632007271023440

%C ..24887884..6615795040..1264215787012..229359164378264...40413288246801524

%C .190093096.90703800392.29260651415912.8855443936590808.2583686563767911744

%H R. H. Hardin, <a href="/A206085/b206085.txt">Table of n, a(n) for n = 1..144</a>

%e Some solutions for n=4 k=3

%e ..2..2..0..1....1..1..2..2....0..0..0..0....2..0..2..2....3..2..0..1

%e ..3..2..0..0....1..2..2..0....3..0..1..1....3..0..0..0....0..2..0..1

%e ..0..0..0..1....1..1..2..3....3..0..1..0....3..3..0..2....2..2..0..0

%e ..1..3..0..0....3..1..2..2....3..0..0..0....3..0..0..2....1..2..2..0

%e ..3..3..3..0....1..1..1..1....3..3..0..1....3..0..1..1....2..2..3..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_ Feb 03 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 4 02:26 EST 2023. Contains 360045 sequences. (Running on oeis4.)